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Abstract

Multiprime RSA is a variant of RSA, where the modulus is the product of three or more prime
numbers. In this paper, we attack Multiprime RSA. Our attack assumes that many instances of
Multiprime RSA all use different moduli, but somehow all use the same secret exponent. Our attack
generalizes the existing attack on RSA by Hinek. We use lattice reduction techniques to recover
the bound for secret exponent.
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1 Introduction

1.1 Multiprime RSA

RSA cryptosystem [1–8, 11, 13, 15–17] is most popular cryptosystem from its invention Multi Prime
RSA: Multi Prime RSA is a simple extension of RSA in which the modulus is the product of r distinct
primes. In this paper, we consider only balanced primes. If we arrange the primes in increasing order,
pi < p(i+1) for i = 1, 2, · · · , r, then we assume that 4 < 1/2N (1/r) < p1 < N (1/r) < pr < 2N (1/r). The
key generation algorithm is same as the key generation algorithm for RSA except here we require r
distinct primes. As usual, the public and private key are defines as ed ≡ 1(modφ(N)), where k is some
positive integer. As in RSA, one can replace φ(N) with N − s. Expanding φ(N), it follows that s can
be written as

s = N − φ(N)

= N −
r∏

(i=1)

(pi − 1)

=

r∑
(i=1)

N

pi
−

r∑
(i,j=1)

N

(pipj)
+

r∑
(i,j,k=1)

N

(pipjpk)
+ · · ·+ (−1)r.

The above expression of s combined with the condition for balanced primes, an upper bound on s is
given by |s| < (2r − 1)N (1−1/r).
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Thus, there are (r − 1)/r most significant bits are common in the φ(N) and N , so N is a good
approximation for φ(N).

1.2 Comparison Between RSA and Multiprime RSA

The encryption algorithm for multiprime RSA is same as the encryption algorithm for RSA. Given plain
text message m, the cipher text is calculated by c = me mod N . The decryption for multi prime RSA
is same as the decryption for RSA, if one consider the standard decryption. If decryption uses Chinese
remaindering theorem, the decryption algorithm for the multi prime RSA is the obvious extension to
the decryption algorithm for CRT-RSA. The efficiency of multi prime RSA depends on two issues.
First one is, the complexity of generating the r distinct primes is lower than the generating two distinct
primes for the original RSA. The second one is, if Chinese remaindering is used for the decryption, then
the decryption costs are lower than the decryption costs for CRT-RSA.

1.3 Breaking Multiprime RSA

If the factorization of modulus is known, then one can break the modulus. In RSA, it is sufficient to
recover the private exponent or to compute φ(N) since there are polynomial time algorithms that can
factor the modulus given either of these. But there is a different issue for the multi prime RSA. There
are no polynomial time algorithms that can factor the modulus given the private exponent or φ(N).
But if we know the multiple of φ(N), the results of Miller can be used to probabilistically factor the
modulus. Also from ed ≡ 1 mod (φ(N)), knowing d is sufficient to obtain the private exponent in order
to (probabilistically) factor the modulus.

In this paper, we attack on the Multi prime RSA, if multi prime RSA is used in broadcast scenario.
That is, the same message broadcasts to several people with same private exponent but different moduli.
Rest of the paper is organized as follows. In Section 2, we introduce some mathematical preliminaries,
In Section 3, we sketch the attack with justification. In Section 4, we provide some experimental results.

2 Terminology

2.1 Lattices

Let B = {b1, b2, · · · , bn} be set of n linearly independent vectors in Rm. The lattice generated by B is

the set L(B) = {
∑n

(i=1) xi
−→
bi : xi ∈ Z}. That is, the set of all integer linear combinations of the basis

vectors. The set B is called basis and we can compactly represent it as an m× n matrix each column
of whose is a basis vector: B = [b1, b2, · · · , bn]. The rank of the lattice is defined as rank(L) = n while
its dimension is defined as dim(L) = m. The volume (determinant) of a lattice denoted by vol(L), is
the n dimensional volume of the parallelepiped spanned by any of it bases. For full dimensional lattice
vol(L) = |det(B)|. Since lattice is discrete, there exists a smallest vector. The necessary condition for a

vector v to be a smallest vector in the lattice is ||v|| ≤
√
nvol(L)

1
n , which is called Minkoswki’s bound.

This bound is useful as it allows for constructing the bounds on certain attacks. For good introduction
of lattices and their applications refer [12,14].

Finding the shortest vector in the lattice is a hard problem. There are some approximation algorithms
to find a shortest vector in the lattice. Here we use the LLL algorithm, because it is well suited in the
most of the attacks in practice.



I.J. of Electronics and Information Engineering, Vol.7, No.2, PP.79-87, Dec. 2017 (DOI: 10.6636/IJEIE.201712.7(2).04) 81

2.2 Lattice Reduction

Lattice reduction is a problem to find the reduced basis of the given lattice. Reduced basis is the basis
of the lattice such that the vectors are near orthogonal. So many versions exist to find reduced basis,
but the one given by Lenstra, Lovasz, Lovasz is a special one, called LLL reduced. Because there exist
a polynomial time algorithm for this reduction called LLL algorithm. This problem is not only solving
the reduced problem, it also gives solution to the shortest vector problem in some extent.

Definition 1 (LLL Reduced). Let b1, b2, · · · , bn be a basis for a lattice and let b∗1, b
∗
2, · · · , b∗n be its Gram-

Schimdt orthogonalization. The basis b1, b2, · · · , bn is said to be Lovaász-reduced or LLL-reduced, if the
Gram-Schimdt coefficients satisfy |µ(i,j)| ≤ 1/2 for 1 ≤ j < i ≤ n, and ||b∗i + µ(i,i−1)b

∗
i ||2 ≥ 3

4 ||b
∗
(i−1)||

2

for 1 < i ≤ n, or equivalently ||b∗i ||2 ≥ ( 3
4 − µ

2
(i,i−1))||b

∗
(i−1)||

2 for 1 < i ≤ n.

A useful property of LLL reduced basis is that the bound for each vector depends on only the
dimension and the volume. The property stated as in [14]. Let L be a lattice spanned by linearly
independent vectors b1, b2, · · · , bn, where b1, b2, · · · , bn ∈ Rn. By b∗1, b

∗
2, · · · , b∗n, we denote the vectors

obtained by applying the Gram-Schimdt process to the vectors b1, b2, · · · , bn. It is known that given
basis b1, b2, · · · , bn of lattice L, LLL reduced find a new basis b1, b2, · · · , bn of L with the following
properties:

||b∗i ||2 ≤ 2||b∗(i+1)||
2;

||b1|| ≤ 2(n/2)det(L)(1/n);

||b2|| ≤ 2(n/2)det(L)(1/(n−1)).

The determinant of is defined as det(L) =
∏w

(i=1) ||b∗i ||, where || denotes the Euclidean norm on
vectors. The LLL algorithm is the first algorithm to compute LLL reduced basis efficiently. For given
a m dimensional lattice with n dimensional lattice vectors the LLL algorithm has run time o(nm5B3),
where B is the bound on the bit length of the input basis vectors.

2.3 Existing Attacks on Multiprime RSA

The most of the attacks on RSA can be generalized into Multi prime RSA. The first attack is the
Wiener attack, stated in [9].

Attack 1: Let N be an r-prime modulus with balanced primes, let e be a valid public exponent and
d be its corresponding private exponent. Given the public key (N, e), if the private exponent

satisfies d ≤ N(1/r)

(2k(2r−1)) , then the modulus can be (probabilistically) factored in time polynomial

in logN for every r ≥ 2.

The second attack is generalization Boneh-Durfee attack on RSA.

Attack 2: For every ε > 0 and integer r ≥ 2 there exists an n0 such that, for every n > n0, the following
holds: Let N be an n-bit r-prime RSA modulus with balanced primes, let e = Nα be a valid public
exponent and let d = Nδ be its corresponding private exponent. Given the public key (N, e), if
the private exponent satisfies δ ≤ 1

3r (4r− 1− 2
√

(r − 1)(r − 1 + 3αr))− ε, then the modulus can
be (probabilistically) factored in time polynomial in n under some assumption. The above attacks
are for the single instance of Multiprime RSA. There are some attacks on Multiprime RSA by
considering the several instances of the same message. For example, common modulus attacks,
in which same message send to the different people with the same modulus. The encryption and
decryption exponents may be different. The second type is common private exponent attack, in
which same message send to the different people with the same private exponent but may be
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different moduli and different public exponents, called common private exponent attack. In this
paper, we consider the common private exponent attack on Multiprime RSA. The attack exists
in the case of RSA and it is stated in [10]. We mention the same here.

Attack 3: For any integer r ≥ 1, let N1, N2, · · · , Nr be balanced RSA moduli satisfying N1 < N2 <
· · · < Nr < 2N1. Let (e,N1), · · · , (e,Nr) be valid public RSA keys each with the same private
exponent d < Nδr

r . If δr <
1
2 −

1
2(r+1) − logNr

(6), then all of the moduli can be factored in time

polynomial in log(Nr) and r, under the some assumption. For the justification of above attack
please refer [10]. In the next section, we introduce the attack on Multi prime RSA and its proof.

3 Attack on Multiprime RSA

3.1 Attack

For any integer n ≥ 1, let N1, N2, · · · , Nn be balanced Multi prime RSA with r primes N1 < N2 <
N3 < · · · < Nn < 2N1. Let (e1, N1), · · · , (en, Nn) be valid Multi prime RSA public keys each with the
same private exponent d < Nδn

n . If δn <
n

r(n+1) − logNn
(4r− 2), then all of the moduli can be factored

in time polynomial in log(Nn) and n.

3.2 Justification

Let M = bN1−1/r
n c. Given the n public keys (e1, N1), · · · , (en, Nn) and d is a secret exponent for all

instances. We begin by considering the n key equations, eid = 1 + ki(Ni − si) along with the trivial
equation dM = dM , written as

dM = dM

e1d−N1k2 = 1− k1s1
e2d−N2k2 = 1− k2s2

... · · ·
...

end−Nnkn = 1− knsn.

The above system of equations can be written as xnBn = vn, where xn = (d, k1, k2, · · · , kn) and

Bn =


M e1 e2 · · · en
0 −N1 0 · · · 0
0 0 −N2 · · · 0
...

...
...

...
...

0 0 0 · · · −Nn


vn = (dM, 1− k1s1, · · · , 1− knsn).

The vector vr is an integer linear combination of the rows in the matrix Bn and hence is a vector in the
lattice L generated by the rows in Bn. Since Ni ≤ Nr < 2N1, ki < d < Nδn

n and |si| < (2r − 1)N1−1/r

for each i = 1, 2, · · · , n, so the vector vr satisfies ||vr|| <
√

1 + n(2r − 1)2N
δn+1−1/r
n Since

||vr||2 = (dM)2 + (1− k1s1)2 + · · ·+ (1− knsn)2

≤ (Nδn+1−1/r
n )2 + (1−Nδn+1−1/r

n (2r − 1))2 + · · ·+ (1−Nδn+1−1/r
n (2r − 1))2

= (Nδn+1−1/r
n )2 + n(1−Nδn+1−1/r

n (2r − 1))2(1 + (2r − 1)2n)(Nδn+1−1/r
n )2
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So we have ||vr|| <
√

(1 + (2r − 1)2n)(N
δn+1−1/r
n ), and that the volume of the lattice L, given by

vol(L) = |det(Bn)|, satisfies vol(L) = |M
∏n
i=1(−Ni)| = bN1−1/r

n c
∏

( i = 1)nNi > (Nn/2)(n+1−1/r).
From Minkowski’s bound, a necessary condition for the vector vr to be a smallest vector in L is given
by ||vr|| <

√
(n+ 1)vol(L)1/(n+1). Using the bounds on the norm of the vector and the volume of the

lattice, a sufficient condition to hold is given by√
(1 + (2r − 1)2n)(Nδn+1−1/r

n ) <
√

(n+ 1)(
Nn
2

)
(n+1−1/r)

n+1 .

This implies, we have

Nδn+1−1/r
n < cr(Nn/2)(n+1−1/r)/(n+1)

where

cr =
√

(n+ 1)/(1 + (2r − 1)2n)
1

2
n+1−1/r

n+1

> (
1

2r − 1
)(

1

2
).

Compare both sides, we get δn + 1 − 1
r < n+1−1/r

n+1 − logNr
(4r − 2). After simplification, we get

δn <
n

r(n+1) − logNn
(4r − 2). When r = 2, the bound equals the bound in paper [10]. So when the

secret exponent is smaller than δn the vector vn has satisfied the Minkowski condition, be a smallest
vector in L. Once the vector vr is obtained we can easily factor all the moduli. From the vector
vr, one knows the secret exponent d, in turn one can compute all ki’s by using the key equations
ki = (eid− (1− kisi))/Ni. From ki and d, one can compute φ(Ni) = ((eid− 1))/ki. But unfortunately,
there are no deterministic algorithm to compute N from φ(N), if N is a product of three or more
numbers. But there is probabilistic algorithm exists (MILLER-RABIN) to compute N from multiplies
of φ(N).

3.3 Experiment

We experiment the above attack for three instances. Nowadays, the RSA modulus is 1024 bits. We
have used SAGE [18] for doing all these calculations. SAGE is freely available library. Three prime
numbers for first instance:

6782249115473301479860934781998946025937950413041213
356008546789157286634233311790115626404827023528453

7084744194090403239794293861446440061838524816853834
157533954737018090407412508042238507192729488148447

8283468323162452783011818008723783652632569943569787
508593486612416664768064854308634917469458300641893

The modulus for first instance:
3980247950243058401243698615396728611119297559768520
695572645927280948679742221358560108539147387672145

5746434097489726940858155275925156644720661899031031
522690868149669416945173654237687392100009851224373
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1954119056065582710154780722805904907071148681687475
673362851582112927479576695012270482243892047135463

Three prime numbers for second instance:
7112016950782513939301172150838079539230135679999340
432930882928796532218789384885663524476743197436939

4565359706261800235586539334646285991321427933608889
275210263010247136380569841822416543375070004144969

8316153309780533698216542357490673442538504203220461
981455565890736516986256830111465405685281007074759

The modulus for second instance:
2700164800762383548238989792096448123453203959676756
421370584710307069143336087323834665054768084857672

6636901769349674889016838942316143898411650895896357
722682461314710330128572111448604468952040247034828

5890303091007520440669270829884833458242141570600997
934491748273501275775301365373289773778866000841269

Three prime numbers for third instance:
7673016393834847941843640704678652781863359389660737
319442571552847363819488175152409712437263055468297

5377937762598075667499364718566642313937013965068651
966132665108749552319333790553717555089278142310147

5395342771000978217135825503436485980920045858078257
716039638576857698703568752771925132861090440121039

The modulus for third instance:
2226388443580189980267475930380569711871363604160786
505024146752022423699461394900237896180365281928686

8926856402008312979469194065931803571405154678409393
428008287143020782113965268621088147936991953030971

8853455860497497103437250790722599219470946672980313
102681290912136274611071861434179694093260525215701

Three Public exponents are:
3537696462947686474560092541384577100358586899102915
517881043631908384269507494307195562677701087700290

1921140746265206159324299005398887508559711938234015
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310500741998703833472546299858066626141602057853163

5308109008933276203679728495107812325549485871417366
930349231085723113959443386893863404314445906898291

2119793582905597408376302854193204396705586325089051
517217681564481829335135017685804292917335888246598

2883389358246566502277619747972818488039725499948416
842432981714327510908996095416699707520836670108868

9304160319616246259106477604741756147202782693272850
299066990031340778958229124744300299133384683262867

9214326962234346157232636108621562614756258379734978
899539837473864655669157559327263924932563098153763

0717332367652942964470071103121685572068347403827092
664257936996711466179189821591897255426658826384606

6663987418662932813667046547312332170293695173445553
88177641613190413419666492918374484131319070146963

The first value in the first row is
2309542821222233650603721891697875739820443719904888
661639426983506182215086103388029979298810386972233

405427450555885305243973015681879463104007864962159270845
16713273665520592898265646709529310696232183482168639488

The required private exponent is 1.54783815979006e61 Actually this is the secret exponent, we have
used in the beginning of the attack. We retrieved by using LLL algorithm. The attack uses the prime
numbers of the length 1024 bits with r = 3, 4. If the instances are more, then one can easily break the
system.

3.4 Practical Effectiveness

The above attack is only heuristic; the original value lies in the practice. Already we showed the
successful attack as toy example. We checked the random instances of Multi prime RSA with 1024 bits
moduli when a common private exponent is shared among different moduli in the range 2 ≤ n ≤ 10
and r = 3, 4. We use the SAGE Library for experimentation. We observe that, if more instances are
available, then one can easily break the system for for the values of r = 3, 4. We use LLL algorithm
from above library. The complexity of the attack is dominated by the LLL algorithm. The complexity
of the LLL algorithm is a polynomial time algorithm in size of the lattice and the exponential in size of
the entries in the lattice. Most of the times, we retrieved the actual value, but some times we get the
nearer value to the actual value. We have done some experiments for the size of the modulus 2048 also.
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4 Conclusion

We showed that Lattice methods can recover the secret exponent in a certain kind of ”Multi prime
RSA” setting. Our attack assumes that many instances of RSA all use different multi-prime moduli,
but somehow all use same secret exponent. In this scenario, we investigate about the smallness of the
secret exponent. If it is less than the above bound, then one can break the system. We also observe
that if the number of instances is increasing, then the breaking the system becomes easy. We use LLL
algorithm to attack this system. LLL algorithm has so many applications in the fields like cryptology,
Communications and Number theory.
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