
I.J. of Electronics and Information Engineering, Vol.8, No.2, PP.75-87, June 2018 (DOI: 10.6636/IJEIE.201806.8(2).01) 75

Products of Monoids and Its Applications
on the Monoids of State Machines

Nacer Ghadbane and Douadi Mihoubi
(Corresponding author: Nacer Ghadbane)

Laboratory of Pure and Applied Mathematics, Department of Mathematics, University of M’sila, Algeria

(Email: Nacer.ghadbane@yahoo.com)

(Received Dec. 12, 2017; revised and accepted Feb. 20, 2018)

Abstract

Let M be a monoid and X a non-empty set. M will be called a transformation monoid on X if
there is a mapping φ : M ×X −→ X, for which we write φ (m,x) = m · x and which satisfies the
conditions:

1) (m1m2) · x = m1 · (m2 · x), for each x ∈ X and for each m1,m2 ∈M .

2) 1M · x = x, for each x ∈ X.

Let M and N be two monoids. Let NM be the set of all functions defined on M with values in N .
In this paper, we prove that the set NM forms a monoid shch that for any ϕ,ψ ∈ NM , let ϕψ ∈ NM

in NM be defined for all m ∈ M by: (ϕψ) (m) = ϕ (m)ψ (m), the monoid M is a transformation
monoid on NM in the following was:
if m ∈ M,ϕ ∈ NM , then (m · ϕ) (x) = ϕm (x) = ϕ (xm) for x ∈ M , and the set of all pairs (m,ϕ)
where m ∈ M,ϕ ∈ NM , with multiplications operation given by: (m,ϕ) (m′, ψ) = (mm′, ϕψm)
where m,m′ ∈ M and ϕ,ψ ∈ NM is a monoid. On the other hand, we present the direct product,
the cascade product and wreath product of state machines, also we calculate the monoids of state
machines.

Keywords: Free Monoid; Monoid of State Machine; Morphism of Monoids; State Machine; Trans-
formation Monoid; Wreath Product of Monoids

1 Introduction

The theory of machines that has developed in last twenty years, has had a considerable influence, not
only on the computer systems, but also biology, biochemestry, etc.

A semigroup is an ordered pair (S, ·), where S is non -empty set and the dot ” ·” is a binary operation
on S, i.e., a mapping (a, b) 7−→ a · b from S × S to S such that for all a, b, c ∈ S, (a · b) · c = a · (b · c)
(associative law).

A semigroup (S, ·) with the identity element is called a monoid [10].
A state machine is a 3-tuple (Q,Σ, δ), where

1) Q is a finite nonempty set (the set of states);

2) Σ is a finite alphabet (the set of inputs);

3) δ is a function of Q× Σ into Q (the transition function) [6, 7].
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The remainder of this paper is organized as follows. In Section 2, we begin with some elementary
material concerning of monoids and state machines. In Section 3, we present direct product, semidirect
product and wreath product of monoids. In Section 4, we introduce the direct product of state machines,
the cascade product and wreath product, also we calculate the monoids of state machines. Finally, we
draw our conclusions in Section 5.

2 Preliminaries

A monoid (M, ·) consists of a set M together with a binary operation ” · ” on M such that

1) a · (b · c) = (a · b) · c for all a, b, c ∈M ;

2) There existes an identity 1M ∈M such that

a · 1M = 1M · a = a for all a ∈M.

A monoid (M, ·) is called commutative if the operation ” ·” is commutative. Hence a semigroup (S, ·)
is just a set S together with an associative binary operation.

Let X be any set and let XX = {f : X −→ X} be the set of all function from X to itself. Then(
XX , ◦

)
is a monoid, called the transformation monoide of X. In fact, the analogue of Cayley’s theorem

holds for monoids, and it can be shown that every monoid can be represented as a transformation
monoid.

Suppose that R is an equivalence relation on a monoid (M, ·). Then R is called a congruence
relation on (M, ·) if aRb implies acRbc and caRcb for all a, b, c ∈ M . The congruence class containing
the element m ∈M is the set [m] = {x ∈M : xRm}.

If R is a congruence relation on the monoid (M, ·), the quotient set M/R = {[m] : m ∈M} is a
monoid under the operation defined by [m] [n] = [mn]. This monoid is called the quotient monoid of
M by R.

If (M, ·) and (N,∆) are two monoids, with identities 1M and 1N , respectively, then the function
f : M −→ N is a monoid morphism from (M, ·) to (N,∆) if

1) f (x · y) = f (x) ∆f (y) for all x, y ∈M ,

2) f (1M ) = 1N .

A monoid isomorphism is simply a bijective monoid morphism.
Let M be a monoid and X a non-empty set. M will be called a transformation monoid on X if there

is a mapping φ : M ×X −→ X, for which we write φ (m,x) = m · x and which satisfies the conditions:

1) (m1m2) · x = m1 · (m2 · x), for each x ∈ X and for each m1,m2 ∈M .

2) 1M · x = x, for each x ∈ X.

For every transformation monoid M on X, there is a homomorphism ψ : M −→ E (X), the monoid
of all mappings f : X −→ X, given by ψ (m) = f , where f (x) = m · x for all x ∈ X.

We formally define an alphabet as a non-empty finite set. A word over an alphabet Σ is a finite
sequence of symbols of Σ. Although one writes a sequence as (σ1, σ2, · · · , σn), in the present context,
we prefer to write it as σ1σ2 · · ·σn. The set of all words on the alphabet Σ is denoted by Σ∗ and is
equipped with the associative operation defined by the concatenation of two sequences [1, 5]:

α1α2 · · ·αnβ1β2 · · ·βm = α1α2 · · ·αnβ1β2 · · ·βm.
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This operation is associative. This allows us to write w = σ1σ2 · · ·σn. The string consisting of zero
letters is called the empty word, written ε. Thus, ε, α, β, ααβα, αααβα are words over the alphabet
{α, β}. Thus the set Σ∗ of words is equipped with the structure of a monoid. the monoid Σ∗ is called
the free monoid on Σ. The length of a word w, in symbols |w|, is the number of letters in w when each
letter is counted as many times as it occurs. Again by definition, |ε| = 0. For example |αβα| = 3 and
|αβαβαα| = 6. Let w be a word over an alphabet Σ. For σ ∈ Σ, the number of occurrences of σ in w
shall be denoted by |w|σ. For example |αβα|β = 1 and |αβαβαα|α = 4 [3, 4].

Let (Σ∗, ·) be the free monoid generated by Σ and let i : Σ −→ Σ∗ be the function that maps each
element σ of Σ into the corresponding word of length 1, so that i (σ) = σ. Then if f : Σ −→ M
is any function into the underlying set of any monoid (M, ·), there is a unique monoid morphism
h : (Σ∗, ·) −→ (M, ·) such that h ◦ i = f .

A state machine is a triple S = (Q,Σ, δ) where Q is a finite set of states, Σ is a finite set of
symbols called the input alphabet and δ : Q × Σ −→ Q is a partial function called the transition
function. The transition function can be extended naturally to sequences of input symbols, by letting
δ (q, wσ) = δ (δ (q, w) , σ) and δ (q, ε) = q, for all w ∈ Σ∗, σ ∈ Σ and q ∈ Q.

A state machine S = (Q,Σ, δ) is called complete if the partial function δ : Q× Σ −→ Q is in fact a
function. In this situation we can specify what the resultant δ (q, σ) is for all possible combinations of
q ∈ Q and σ ∈ Σ.

Let σ ∈ Σ, define δσ : Q −→ Q by δσ (q) = δ (q, σ) for each q ∈ Q. Let w ∈ Σ+ be a word of
length at least 1 with symbols from Σ. Suppose that w = σ1σ2 · · ·σn then we define δw : Q −→ Q by
δw (q) = δσn

δσn−1
· · · δσ1

(q).
Let S = (Q,Σ, δ) be a state machine, define the monoid morphism h : (Σ∗, ·) −→

(
QQ, ◦

)
by

h (w) = δw. Define the relation R on Σ∗ by wRw′ if and only if h (w) = h (w′). This is easily verified
to be an equivalence relation. Furthermore, it is a congruence relation. The qoutient monoid (Σ∗/R, ·)
is called the monoid of the state machine (Q,Σ, δ).

3 Direct Product, Semidirect Product and Wreath Product of
Monoids

In this section, we present direct product, semidirect product and wreath product of monoids.

Proposition 1. Let M and N be monoids, consider the set M ×N the cartesian product of M and
N , and define a multiplication ” · ” on M ×N as follows:

(m1, n1) · (m2, n2) = (m1m2, n1n2) .

This result is a monoid (M ×N, ·) with is called the direct product of M and N .

Proof. It is easy to show that this product is associative and the identity element in M×N is (1M , 1N ).

Example 1. Let M = (N,+) and N = (N,×), then in the direct product M×N we have (m,n)·(r, s) =
(m+ r, n× s).

Proposition 2. Given three monoids M,N,L we can form the direct product (M ×N) × L similarly
M × (N × L) and the relationship between these two monoids is the isomorphism [6]:

(M ×N)× L ∼= M × (N × L) .
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Proof. The isomorphism is h : (M ×N)× L −→M × (N × L) defined by

h ((m,n) , l) = (m, (n, l)) ,

where m ∈M,n ∈ N, l ∈ L.

Proposition 3. Given any monoids M and N , suppose that θ : N −→ End (M) is a monoid morphism.
Then (M ×N, ·) is a monoid under the operation ” · ” defined by (m,n) · (m′, n′) = (mθ (n) (m′) , nn′)
where m,m′ ∈M,n, n′ ∈ N . The monoid (M ×N, ·) is called the semidirect product of M and N with
respect to θ and it is denoted by M ×θ N . [1, 8, 9]

Proof. From [6]:

1) We will prove that ” · ” is associative on M ×N : let m,m′,m” ∈M,n, n′, n′′ ∈ N , we have

((m,n) · (m′, n′)) · (m′′, n′′)
= (mθ (n) (m′) , nn′) · (m′′, n′′)
= (mθ (n) (m′) θ (nn′) (m′′) , (nn′)n′′)

= (mθ (n) (m′) θ (n) (θ (n′) (m′′)) , (nn′)n′′)

= (mθ (n) (m′θ (n′) (m′′)) , (nn′)n′′) .

Also we have

(m,n) · ((m′, n′) · (m′′, n′′))
= (m,n) (m′θ (n′) (m′′) , n′n′′)

= (mθ (n) (m′θ (n′) (m′′)) , n (n′n′′)) .

Then ” · ” is associative on M ×N .

2) For (m,n) ∈M ×N , (m,n) · (1M , 1N ) = (mθ (n) (1M ) , n1N ) = (m1M , n) = (m,n).
Also (1M , 1N ) · (m,n) = (1Mθ (1N ) (m) , 1Nn) = (1MIdM (m) , n) = (m,n). Hence (M ×N, ·) is
a monoid.

Proposition 4. Let M and N be two monoids. Let NM be the set of all functions defined on M
with values in N .

1) The set NM forms a monoid shch that for any ϕ,ψ ∈ NM , let ϕψ ∈ NM in NM be defined for
all m ∈M by: (ϕψ) (m) = ϕ (m)ψ (m).

2) The monoid M is a transformation monoid on NM in the following was:

• If m ∈M,ϕ ∈ NM , then (m · ϕ) (x) = ϕm (x) = ϕ (xm) for x ∈M .

3) The set of all pairs (m,ϕ) where m ∈M,ϕ ∈ NM , with multiplications operation given by:
(m,ϕ) (m′, ψ) = (mm′, ϕψm) where m,m′ ∈M and ϕ,ψ ∈ NM is a monoid [1, 8, 9].

Proof.

1) First we will prove that the set NM froms a monoid shch that for any ϕ,ψ ∈ NM , let ϕψ in NM

be defined for all m ∈M by: (ϕψ) (m) = ϕ (m)ψ (m).
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a. NM is non-empty and is closed with respect to multiplication. If ϕ,ψ ∈ NM , then ϕ (m) , ψ (m) ∈
N , for all m ∈ M . Hence ϕ (m)ψ (m) ∈ N . This implies that (ϕψ) (m) ∈ N and so
ϕψ ∈ NM .

b. Since multuplication in N is associative, so also is the multuplication in NM .

c. The identity element in NM is the map e : M −→ N given by e(m) = 1N , for all m ∈ M ,
where 1N is the identity element of N .

2) Second, we will prove that M is a transformation monoid on NM in the following was: if m ∈
M,ϕ ∈ NM , then (m · ϕ) (x) = ϕm (x) = ϕ (xm) for x ∈M .

Take ϕ,ψ ∈ NM and m,m′ ∈M , then

((mm′) · f) (x) = f (xmm′)

(m · (m′ · f)) (x) =
(
m · fm

′
)

(x)

=
(
fm
′
)m

(x)

= fm
′
(xm) = f (xmm′) .

ϕ1M (x) = ϕ (x1M )

= ϕ (x) .

(ϕψ)
m

(x) = ϕψ (xm)

= ϕ (xm)ψ (xm)

= ϕm (x)ψm (x) .

(ϕm)
m′

(x) = ϕm (xm′)

= ϕ (xm′m)

= ϕm
′m (x) .

Then (ϕm)
m′

= ϕm
′m.

3) We will prove that M ×NM is a monoid with multiplication:

(m,ϕ) (m′, ψ) = (mm′, ϕψm)

where m,m′ ∈M and ϕ,ψ ∈ NM :

a. Closure property follows from the definition of multiplication.

b. Take ϕ,ψ, η ∈ NM and m,m′,m” ∈ G, then

((m,ϕ) (m′, ψ)) (m′′, η) = (mm′, ϕψm) (m′′, η)

=
(

(mm′)m′′, ϕψmηmm
′
)
.

Also we have

(m,ϕ) ((m′, ψ) (m′′, η)) = (m,ϕ)
(
m′m′′, ψηm

′
)

=
(
m (m′m′′) , ϕ

(
ψηm

′
)m)

=
(
m (m′m′′) , ϕψmηmm

′
)
.
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c. We know that for every ϕ ∈ NM , ϕ1M = ϕ, now for every m ∈ M , the map ϕ −→ ϕm is
an automorphism of NM . Also if e is the identity element in NM , then em = e. We have
(m,ϕ) (1M , e) = (m1M , ϕe

m) = (m,ϕe) = (m,ϕ). Also (1M , e) (m,ϕ) =
(
1Mm, eϕ

1M
)

=
(m, eϕ) = (m,ϕ). Thus identity element exists.

Hence M ×NM is a monoid with respect to the multiplication defined above.

Remark 1. If the monoid M is commutative, then M×NM is a monoid with multiplication (m,ϕ) (m′, ψ) =(
mm′, ϕm

′
ψ
)

where m,m′ ∈M and ϕ,ψ ∈ NM .

Proposition 5. Let M and N be two monoids, and let MN denote the set of all functions from the
monoid N to the monoid M , then the set MN×N is a monoid under the multiplication (ϕ, n1) (ψ, n2) =
(ϕψ, n1n2) where ϕψ ∈MN is defined by

ϕψ (x) = ϕ (x)ψ (xn1)

for x, n1, n2 ∈ N and ϕ,ψ ∈MN .
We call the monoid MN ×N the wreath product of M and N [1, 8, 9].

Proof. From [6]:

1) We will prove that the multiplication is associative on MN×N . Let ϕ,ψ, η ∈MN and n1, n2, n3 ∈
N then

((ϕ, n1) (ψ, n2)) (η, n3) = (ϕψ, n1n2) (η, n3)

= ((ϕψ) η, n1n2n3) .

And

(ϕ, n1) ((ψ, n2) (η, n3)) = (ϕ, n1) (n2n3, ψη)

= (ϕ (ψη) , n1n2n3) .

The, we will prove that

(ϕψ) η = ϕ (ψη) .

Let x ∈ N , then

((ϕψ) η) (x) = (ϕψ) (x) η (xn1n2)

= ϕ (x)ψ (xn1) η (xn1n2) .

And

(ϕ (ψη)) (x) = ϕ (x)ψη (xn1)

= ϕ (x)ψ (xn1) η (xn1n2) .

2) Let the map e : N −→M given by e(n) = 1M for all n ∈ N . We have

(ϕ, n) (e, 1N ) = (ϕe, n1N )

= (ϕe, n) ,
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where

(ϕe) (x) = ϕ (x) e (xn)

= ϕ (x) 1M = ϕ (x)

for n, x ∈ N and ϕ ∈MN , then

(ϕ, n) (e, 1N ) = (ϕ, n) .

Also

(e, 1N ) (ϕ, n) = (eϕ, 1Nn)

= (eϕ, n) ,

where

(eϕ) (x) = e (x)ϕ (x1N )

= 1Mϕ (x)

= ϕ (x) .

Then (e, 1N ) (ϕ, n) = (ϕ, n). The identity element in MN ×N is (e, 1N ).

4 Applications of Products of Monoids on The Monoids of
State Machines

In this section, we present the direct product of state machines, the cascade product and wreath product.

Definition 1. Let S1 = (Q1,Σ1, δ1) and S2 = (Q2,Σ2, δ2) be state machines. Suppose that S1 and
S2 are state machines with the same unput Σ. Connecting them up in this way, will produce a new
state machine S1 × S2 = (Q1 ×Q2,Σ, δ1 × δ2) where (δ1 × δ2) ((q1, q2) , σ) = (δ1 (q1, σ) , δ2 (q2, σ)) for
σ ∈ Σ, (q1, q2) ∈ Q1 ×Q2.
We call this state machine the restricted direct product of S1 and S2 [5, 6].

Example 2. Let S1 = (Q1,Σ1, δ1) be state machine where Q1 = {0, 1} ,Σ1 = {σ} and δ1 : Q1×Σ1 −→

Q1 given by:

δ1 σ
0 1
1 0

and S2 = (Q2,Σ2, δ2) given by

Q2 = {0, 1} ,
Σ2 = {σ}

δ2 : Q2 × Σ2 −→ Q2

δ2 σ
0 1
1 1

Then S1 × S2 = (Q1 ×Q2,Σ, δ1 × δ2) where Q1 × Q2 = {(0, 0) , (0, 1) , (1, 0) , (1, 1)} , δ1 × δ2 :

(Q1 ×Q2)× Σ −→ (Q1 ×Q2) given by:

δ1 × δ2 σ
(0, 0) (1, 1)
(0, 1) (1, 1)
(1, 0) (0, 1)
(1, 1) (0, 1)
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Define δσ : Q1 −→ Q1 by δσ (q) = δ (q, σ) for each q ∈ Q1. We have δσ =

(
0 1
1 0

)
and δσ ◦ δσ =

IdQ1
, Let w ∈ {σ}+ be a word of length at least 1 with symbols from {σ}. Suppose that w = σn, n ∈ N∗

then we define (δ1)w : Q1 −→ Q1 by (δ1)w (q) = δσδσ · · · δσ (q). We have

δw =

{
IdQ1

if n = 2k, k ∈ N
δσ if n = 2k + 1, k ∈ N

h1 :
(
{σ}∗ , ·

)
−→

(
QQ1

1 , ◦
)

by h1 (w) = δw. Define the relation R1 on {σ}∗ by wR1w
′ if and only if h1 (w) = h1 (w′). This is

easily verified to be an equivalence relation. Furthermore, it is a congruence relation. The qoutient
{σ}∗ /R1 = {[ε] , [σ]}.

The monoid of the state machine (Q1, {σ} , δ1) is given by:
· [ε] [σ]
[ε] [ε] [σ]
[σ] [σ] [ε]

Define δ2 : Q2 −→ Q2 by δσ (q) = δ (q, σ) for each q ∈ Q2. We have δσ =

(
0 1
1 1

)
, Let w ∈ {σ}+

be a word of length at least 1 with symbols from {σ}. Suppose that w = σn, n ∈ N∗ then we define
(δ2)w : Q2 −→ Q2 by (δ2)w (q) = δσδσ · · · δσ (q). We have

δw =

{
IdQ1

if n = 0
δσ if n ∈ N∗

h2 :
(
{σ}∗ , ·

)
−→

(
QQ2

2 , ◦
)

by h2 (w) = δw. Define the relation R2 on {σ}∗ by wR2w
′ if and only if h2 (w) = h2 (w′). This is

easily verified to be an equivalence relation. Furthermore, it is a congruence relation. The qoutient
{σ}∗ /R2 = {[ε] , [σ]}.

The monoid of the state machine (Q2, {σ} , δ2) is given by:
· [ε] [σ]
[ε] [ε] [σ]
[σ] [σ] [σ]

Define (δ1 × δ2)σ : Q1 × Q2 −→ Q1 × Q2 by (δ1 × δ2)σ ((q1, q2)) = (δ1 (q1, σ) , δ2 (q2, σ)) for each
(q1, q2) ∈ Q1 ×Q2. We have

(δ1 × δ2)σ = ϕ =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(1, 1) (1, 1) (0, 1) (0, 1)

)
,

ϕ2 =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (1, 1) (1, 1)

)
,

ϕ3 = ϕ.

Let w ∈ {σ}+ be a word of length at least 1 with symbols from {σ}. Suppose that w = σn, n ∈ N∗ then
we define

(δ1 × δ2)w : Q1 ×Q2 −→ Q1 ×Q2

by

(δ1 × δ2)w ((q1, q2)) = δσδσ · · · δσ ((q1, q2)) .
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We have

(δ1 × δ2)w =

 IdQ1
if n = 0

ϕ if n = 2k + 1, k ∈ N
ϕ2 if n = 2k, k ∈ N∗

ψ :
(
{σ}∗ , ·

)
−→

(
(Q1 ×Q2)

Q1×Q2 , ◦
)

by ψ (w) = (δ1 × δ2)w.
Define the relation R on {σ}∗ by wRw′ if and only if ψ (w) = ψ (w′). This is easily verified to be an

equivalence relation. Furthermore, it is a congruence relation. The qoutient {σ}∗ /R =
{

[ε] , [σ] ,
[
σ2
]}

.
The monoid of the state machine (Q1 ×Q2, {σ} , δ1 × δ2) is given by:

· [ε] [σ]
[
σ2
]

[ε] [ε] [σ]
[
σ2
]

[σ] [σ]
[
σ2
]

[σ][
σ2
] [

σ2
]

[σ]
[
σ2
]

Definition 2. Let S1 = (Q1,Σ1, δ1) and S2 = (Q2,Σ2, δ2) be state machines. We define

S1 × S2 = (Q1 ×Q2,Σ1 × Σ2, δ1 × δ2)

where

(δ1 × δ2) ((q1, q2) , (σ1, σ2)) = (δ1 (q1, σ1) , δ2 (q2, σ2))

for

(σ1, σ2) ∈ Σ1 × Σ2, (q1, q2) ∈ Q1 ×Q2.

We call this state machine the full direct product of S1 and S2 [5, 6].

Example 3. Let S1 = (Q1,Σ1, δ1) be state machine where Q1 = {0, 1} ,Σ1 = {σ} and δ1 : Q1×Σ1 −→

Q1 given by:

δ1 σ
0 1
1 0

and S2 = (Q2,Σ2, δ2) given by

Q2 = {0, 1} ,
Σ2 = {σ, τ}

δ2 : Q2 × Σ2 −→ Q2

δ2 σ τ
0 1 0
1 1 0

Then S1 × S2 = (Q1 ×Q2,Σ1 × Σ2, δ1 × δ2) where Q1 × Q2 = {(0, 0) , (0, 1) , (1, 0) , (1, 1)} , δ1 × δ2 :
(Q1 ×Q2)× Σ1 × Σ2 −→ (Q1 ×Q2) given by:

δ1 × δ2 (σ, σ) (σ, τ)
(0, 0) (1, 1) (1, 0)
(0, 1) (1, 1) (1, 0)
(1, 0) (0, 1) (0, 0)
(1, 1) (0, 1) (0, 0)
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Define δσ : Q1 −→ Q1 by δσ (q) = δ (q, σ) for each q ∈ Q1. We have

δσ =

(
0 1
1 0

)
and δσ ◦ δσ = IdQ1

, Let w ∈ {σ}+ be a word of length at least 1 with symbols from {σ}. Suppose that
w = σn, n ∈ N∗ then we define (δ1)w : Q1 −→ Q1 by (δ1)w (q) = δσδσ · · · δσ (q). We have

δw =

{
IdQ1

if n = 2k, k ∈ N
δσ if n = 2k + 1, k ∈ N

h1 :
(
{σ}∗ , ·

)
−→

(
QQ1

1 , ◦
)

by h1 (w) = δw. Define the relation R1 on {σ}∗ by wR1w
′ if and only if h1 (w) = h1 (w′). This is

easily verified to be an equivalence relation. Furthermore, it is a congruence relation. The qoutient
{σ}∗ /R1 = {[ε] , [σ]}.
The monoid of the state machine (Q1, {σ} , δ1) is given by:

· [ε] [σ]
[ε] [ε] [σ]
[σ] [σ] [ε]

Define δσ : Q2 −→ Q2 by δσ (q) = δ2 (q, σ) for each q ∈ Q2, δτ : Q2 −→ Q2 by δτ (q) = δ2 (q, τ) for each
q ∈ Q2. We have

δσ =

(
0 1
1 1

)
,

δτ =

(
0 1
0 0

)
,

δσ ◦ δτ = δσ ◦ δσ
= δσ, δτ ◦ δσ
= δτ ◦ δτ
= δτ ,

Let w ∈ {σ, τ}+ be a word of length at least 1 with symbols from {σ, τ}. We have

δw =

 IdQ1 if w = ε
δσ if w ∈ {σ, τ}∗ σ
δτ if w ∈ {σ, τ}∗ τ

h2 :
(
{σ}∗ , ·

)
−→

(
QQ2

2 , ◦
)

by h2 (w) = δw. Define the relation R2 on {σ, τ}∗ by wR2w
′ if and only if h2 (w) = h2 (w′). This

is easily verified to be an equivalence relation. Furthermore, it is a congruence relation. The qoutient
{σ, τ}∗ /R2 = {[ε] , [σ] , [τ ]}.

The monoid of the state machine (Q2, {σ, τ} , δ2) is given by:

· [ε] [σ] [τ ]
[ε] [ε] [σ] [τ ]
[σ] [σ] [σ] [τ ]
[τ ] [τ ] [σ] [τ ]

.
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Define (δ1 × δ2)(σ,σ) : Q1 ×Q2 −→ Q1 ×Q2 by (δ1 × δ2)(σ,σ) ((q1, q2)) = (δ1 (q1, σ) , δ2 (q2, σ)) for each

(q1, q2) ∈ Q1 ×Q2. We have

(δ1 × δ2)(σ,σ) = η =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(1, 1) (1, 1) (0, 1) (0, 1)

)
,

η2 =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (1, 1) (1, 1)

)
,

η3 = η.

And (δ1 × δ2)(σ,τ) : Q1 × Q2 −→ Q1 × Q2 by (δ1 × δ2)(σ,τ) ((q1, q2)) = (δ1 (q1, σ) , δ2 (q2, τ)) for each

(q1, q2) ∈ Q1 ×Q2. We have

(δ1 × δ2)(σ,τ) = µ =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(1, 0) (1, 0) (0, 0) (0, 0)

)
,

µ2 =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (1, 0) (1, 0)

)
,

µ3 = µ.

The monoid of the state machine S1 × S2 = (Q1 ×Q2,Σ1 × Σ2, δ1 × δ2) is given by:

· [ε] [(σ, σ)] [(σ, σ)
2
] [(σ, τ)] [(σ, τ)

2
]

[ε] [ε] [(σ, σ)] [(σ, σ)
2
] [(σ, τ)] [(σ, τ)

2
]

[(σ, σ)] [(σ, σ)]
[
(σ, σ)

2
]

[(σ, σ)]
[
(σ, τ)

2
]

[(σ, τ)]

[(σ, σ)
2
]
[
(σ, σ)

2
]

[(σ, σ)] [(σ, σ)
2
] [(σ, τ)]

[
(σ, τ)

2
]

[(σ, τ)] [(σ, τ)]
[
(σ, σ)

2
]

[(σ, σ)] [(σ, τ)
2
] [(σ, τ)]

[(σ, τ)
2
] [(σ, τ)

2
] [(σ, σ)] [(σ, σ)

2
] [(σ, τ)] [(σ, τ)

2
]

Definition 3. Let S1 = (Q1,Σ1, δ1) and S2 = (Q2,Σ2, δ2) be state machines. We define the cascade
product of S1 and S2 with respect to ω : Q2 × Σ2 −→ Σ1 by

S1ωS2 = (Q1 ×Q2,Σ2, δ
ω)

where

δω ((q1, q2) , σ2) = (δ1 (q1, ω (q2, σ2)) , δ2 (q2, σ2))

for σ2 ∈ Σ2, (q1, q2) ∈ Q1 ×Q2 [5, 6].

Example 4. Let S1 = (Q1,Σ1, δ1) be state machine where Q1 = {0, 1} ,Σ1 = {σ, τ} and δ1 :

Q1 × Σ1 −→ Q1 given by:

δ1 σ τ
0 1 0
1 1 0

and S2 = (Q2,Σ2, δ2) given by Q2 = {0, 1} , Σ2 = {σ} and

δ2 : Q2 × Σ2 −→ Q2

δ2 σ
0 1
1 0

. Define a mapping ω : Q2 × Σ2 −→ Σ1 by ω (0, σ) = σ, ω (1, σ) = τ .
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The cascade product S1ωS2 = (Q1 ×Q2,Σ2, δ
ω) where given by

δω σ
(0, 0) (1, 1)
(0, 1) (0, 0)
(1, 0) (1, 1)
(1, 1) (0, 0)

Define (δω)σ : Q1×Q2 −→ Q1×Q2 by (δω)σ ((q1, q2)) = (δ1 (q1, ω (q2, σ)) , δ2 (q2, σ)) for each (q1, q2) ∈
Q1 ×Q2. We have

(δω)σ = φ =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(1, 1) (0, 0) (1, 1) (0, 0)

)
,

(δω)σσ = φ2 =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (1, 1) (0, 0) (1, 1)

)
.

The monoid of the state machine S1ωS2 is given by

· [ε] [σ] [σ2]
[ε] [ε] [σ] [σ2]
[σ] [σ] [σ2] [σ]
[σ2] [σ2] [σ] [σ2]

Definition 4. Let S1 = (Q1,Σ1, δ1) and S2 = (Q2,Σ2, δ2) be state machines. We define the wreath prod-

uct of S1 and S2 by S1WS2 =
(
Q1 ×Q2,Σ

Q2

1 × Σ2, δ
W
)

where δW ((q1, q2) , (f, σ2)) = (δ1 (q1, f (q2)) , δ2 (q2, σ2))

for σ2 ∈ Σ2, f ∈ ΣQ2

1 , (q1, q2) ∈ Q1 ×Q2 [5, 6, 7].

Example 5. Let S1 = (Q1,Σ1, δ1) be state machine where Q1 = {0, 1} ,Σ1 = {σ, τ} and δ1 :

Q1 × Σ1 −→ Q1 given by:

δ1 σ τ
0 1 0
1 1 0

and S2 = (Q2,Σ2, δ2) given by Q2 = {0, 1} , Σ2 = {σ} and

δ2 : Q2 × Σ2 −→ Q2

δ2 σ
0 1
1 0

. Denote the four elements of ΣQ2

1 by f1, f2, f3, f4 where

f1 (0) = f1 (0) = σ.

f2 (0) = σ, f2 (1) = τ.

f3 (0) = τ, f3 (1) = σ.

f4 (0) = f4 (1) = τ.

Then the state machine S1WS2 has the table

δW (0, 0) (0, 1) (1, 0) (1, 1)
(f1, σ) (1, 1) (1, 0) (1, 1) (1, 0)
(f2, σ) (1, 1) (0, 0) (1, 1) (0, 0)
(f2, σ) (0, 1) (1, 0) (0, 1) (1, 0)
(f4, σ) (0, 1) (0, 0) (0, 1) (0, 0)
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Define
(
δW
)
(f1,σ)

: Q1 ×Q2 −→ Q1 ×Q2 by
(
δW
)
(f1,σ)

((q1, q2)) = (δ1 (q1, f1 (q2)) , δ2 (q2, σ)) for each

(q1, q2) ∈ Q1 ×Q2. We have

(
δW
)
(f1,σ)

= α =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(1, 1) (1, 0) (1, 1) (1, 0)

)
,

(
δW
)
(f2,σ)

= β =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(1, 1) (0, 0) (1, 1) (0, 0)

)
,

(
δW
)
(f3,σ)

= γ =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (1, 0) (0, 1) (1, 0)

)
(
δW
)
(f4,σ)

= λ =

(
(0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 0) (0, 1) (0, 0)

)
.

5 Conclusion

In this paper, we give a specific transformation monoid, after that, we give the monoids of state machines
associate with the direct product, the cascade product and wreath product of state machines.
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